Application de la R.M.N. du ¹³c a la determination de structure de deux derives hydroxyles de la N-methyl dihydro-2.16 vincadifformine

Par G. LUKACS*, M. DE BELLEFON**, L. LE MEN-OLIVIER**, J. LEVY** et J. LE MEN**.

* Institut de Chimie des Substances Naturelles du C.N.R.S. - 91190 GIF-SUR-YVETTE

* Faculté de Pharmacie, E.R.A. au C.N.R.S. n° 319, 51 rue Cognacq-Jay, 51096 REIMS CEDEX

(Received in France 19 December 1973; received in UK for publication 28 December 1973)

En vue d'éventuelles et futures corrélations chimiques avec des alcaloïdes du type *aspidospermine* les deux dérivés hydroxylés <u>4</u> et <u>6</u> ont été préparés (1). Leur structure est établie grâce, notamment, à l'étude des spectres de R.M.N. du ¹³C.

Par oxymercuration-démercuration, réputée hydroxyler les oléfines en position MARKOVNIKOFF, la N-méthyl dihydro-2,16 tabersonine <u>2</u> a fourni l'alcool <u>4</u> (rendement 8 %), $C_{22}H_{30}O_{3}N_{2}$, F.164°, (a)_n + 76° (CHCl₃) ; dérivé O-acétylé <u>5</u> $C_{24}H_{32}O_4N_2$.

Par hydroboration-oxydation, réputée hydroxyler les oléfines en position anti-MARKOVNIKOFF, <u>2</u> a fourni l'alcool <u>6</u> (rendement 13 %), $C_{22}H_{30}O_3N_2$, non cristallisé, (**a**)_D + 66° (CHCl₃) -dérivé acétylé <u>7</u>- ainsi que le diol <u>8</u> (rendement 7 %), F. 158° et un peu d'alcool insaturé <u>9</u>, identifié au produit de réduction de <u>2</u> par LiAlH₄. Les variations de masse des ions pipéridiniques apparaissant sur les spectres de masse de ces dérivés (tableau 1) indiquent clairement que <u>4</u> et <u>6</u> sont des alcools en position 14 ou 15.

Trois arguments tirés des spectres de R.M.N. du ¹H (tableau 2) conduisent à placer l'hydroxyle de <u>4</u> en 15 (axial) :

(1°) le déplacement du signal du méthyle de la chaîne latérale dans ce seul dérivé,

(2^A) la présence sur les spectres de <u>4</u> et <u>5</u> d'un octet, à 4,23 et 4,28 respectivement, rapporté au proton H_a axial porté par C₃ avec les couplages suivants: J._{Ha-Hb}12 Hz, J'_{Ha-Hd}6 Hz (couplage ax.ax.), J"_{Ha-Hc}²,5 Hz (couplage ax.eq.),

(3°) le signal H_e porté par C₁₅, en partie masqué sur <u>4</u> par le singulet à 3,64 p.p.m., apparaît sur <u>5</u> sous forme d'un triplet symétrique centré sur 4,68 p.p.m., (J. 2,5 Hz)qui s'accorde avec l'orientation équatoriale de ce proton.

Deux arguments tirés des spectres de R.M.N. du ¹H conduisent à placer l'hydroxyle de <u>6</u> en 14 (axial).

(1°) le proton axial H_a porté par C_3 apparaît sur <u>6</u> sous forme d'un multiplet centré sur 3,94 p.p.m. et sur <u>7</u> sous forme d'un multiplet centré sur 4,26 p.p.m. à cause de la présence du groupement oxygéné sur le carbone voisin,

(2°) le signal du proton H_r porté par C₁₄ entre 3,6 et 3,8 p.p.m., masqué sur <u>6</u>

Tableau 1 : SPECTRES DE MASSE							Tableau 2 : SPECTRES DE R.M.N. du ¹ H						
m*		M ⁺ -H₂0 ^{OU} M ⁺ -Ac0	M [†] - HC ₁₇ ≖C ₁₆ HR	ions aromati- ques	ions pipéridini- ques	C ₁₈ -H ₃		соосн,	C ₂ -H	C3-H	С ₁₅ -Н	C ₁₄ -H	
1	338	-	252	130-144	122 135 208								
2	352	-	266	144-158	122 135 208	12	20,48	3,71	3,68	q. 3,90			
3	354	-	268	144-158	124 210	13	0,43	3,73	3,5 J.2,5	oct.4,06			
4	370	352	284	144-158	140 226	1	0,75	3,75	3,64 J.2,5	oct.4,23	3,65		
5	412	353	326	144-158	182 268	1	50,50	3,76	3,62 J.2,0	oct.4,28	t.4,68		
6	370	352	284	144-158	140 226	1	50,50	3,75	3,61 J.2,0	m. 3,94		3,6-3,8	
2	412	353	326	144-158	182 268	112	0,52	3,78	3,68 J.2,0	m. 4,26		q. 5,02	
8	342	324	284	144-158	140 198		. (N-1	CHale	ntre 2.62 e	t 2.68 su	r 234	56et7	
9	324	-	266	144-158	122 <u>135</u> 180	5	3. (CH	3C00)	à 1,98 sur	5 et à 2,1	D2 sur	2	

par les signaux du COOCH₃ et du C₂-H, apparaît sur <u>7</u> sous forme d'un quintuplet centré sur 5,02 p.p.m.,(J éq.éq. = J ax.éq. = 3 Hz)qui s'accorde avec l'orientation équatoriale de ce proton. Ces conclusions se trouvent confirmées par l'examen des spectres de R.M.N. du ¹³C (2) de <u>1,2,3,4,6</u> et <u>8</u> (tableau 3).

L'effectation des signaux des atomés de carbone aromatiques C₈, C₉, C₁₀, C₁₁, C₁₂ et C₁₃ résulte de travaux antérieurs(3)(4)celle des signaux <u>COOCH₃, COOCH₃, NCH₃, CH₂OH et CH₃ en 18 résulte d'expériences de découplage partiel, celle des autres carbones est ci-dessous discutée.</u>

Les déplacements par effet a du C_{14} et du C_{15} indiquent clairement les positions de fixation de l'hydroxyle, respectivement sur C_{15} dans <u>4</u> et sur le C_{14} dans <u>6</u> et <u>8</u>. Les positions des signaux C_2 et C_{21} , de type méthine (CH), sont voisines mais celle du C_2 est fortement blindée dans <u>1</u> *seulement*, en raison de la suppression de l'effet β (N-H au lieu de N-CH₃); et le signal du C_{21} est sensiblement blindé dans <u>1</u> et <u>2</u> en raison de la double liaison en position homo-allylique (4) et dans <u>4</u> par un effet 1-3 diaxial entre le H₂₁ (ax.) et le OH(ax.). Le signal du C_{16} de type méthine (CH) est légèrement déblindé dans <u>1</u> par suppression de l'effet γ (NH au lieu de N CH₃).

La distinction entre les deux carbones quaternaires C_7 et C_{20} est eisée (4); le position du signal C_7 est constante dans tous les dérivés alors que celle du C_{20} subit un effet allylique dans les cas de <u>1</u> et <u>2</u> et un effet β dans le cas de l'alcool <u>4</u>.

Les positions des carbones méthyléniques $(CH_2) C_5$ et C_6 , éloignés de toutes les substitutions intervenues, sont presque constantes, l'attribution du signal le plus blindé au voisinage de 43 p.p.m. est faite au C_6 en raison de travaux antérieurs (4) et s'explique par la nature néopentylique de ce carbone , le C_5 subit un léger déplacement (54,0) dans le cas de <u>6</u> en raison de l'hydroxyle fixé en C_{14} . Le C_3 méthylénique est fortement blindé dans <u>4</u> en raison de l'interaction 1-3 diaxiale entre l'hydroxyle axial du C_{15} et le proton axial porté par C_3 , et déblindé dans <u>6</u> et <u>8</u> par effet β de l'hydroxyle fixé sur C_{14} . Le signal du C_{15} est repoussé vers les champs forts (29,0) dans le seul cas de l'alcool <u>4</u> en raison de l'orientation *cie* des liaisons C_{20} - C_{18} et C_{15} -0. L'étude des spectres de R.M.N. du ¹³C d'autres dérivés de cette

 3
 CH3,COOCH3 ax., H
 H

 4
 CH3,COOCH3 ax., OH
 H

 5
 CH3,COOCH3 ax., OAc, H

 6
 CH3,COOCH3 ax., H
 OH

 7
 CH3,COOCH3 ax., H
 OAc

 8
 CH3,COOCH3 ax., H
 OA

Tableau 3 : SPECTRE DE R.M.N. du ¹³ C									
	<u> </u>	2	3	4	6	8			
C₂	66,3	75,7	75,5a	77.0	77.0a	76.8a			
C3	51,3	51,4	52,2	45.4	59.0	59.0			
C ₅	52,2	52,8	53,5	53.0	54.0	53.80			
C ₆	43,0	43,3	42,9	43.6	42.5b	43.8b			
C7	52,9	52,8	52,4	52,2	52.9	52.9			
C ₈	133,5	134,3	135,5	136.0	136.0	136.0			
C,	122,8	122,1	122,3	123.0	122.7	122.4			
C10	117,5	117,4	117,6	118.3	118.3	118.1			
C11	127,3	127,5	127,3	128.0	128.0	127.5			
C12	107,9	106,7	106,9	107,5	107.5	108.3			
C13	149,9	152,3	152,4	153,0	153,0	153.0			
C14	122,8	122,1	22,1	28,0a	66.7	66.7			
C15	134,5	135,0	36,4	72,6	42,1b	42.1b			
C16	39,2	37,7	37,9	38,0	37.6	-0			
C17	31,8	31,0	27,5	25,8	28,3	30.9			
C18	8,2	8,3	7,8	7,3	7.8	7.8			
C19	33,7	33,7	34,2	29,0a	35.7	36.0			
C20	37,3	37,0	33,4	38,0	33,2	33.1			
C ₂₁	69,1	70,0	76,1a	70,2	75,7a	75.3a			
<u>C</u> 00CH ₃	175,2	174,9	175,5	176,2	175,8	-			
COO <u>CH</u> 3	51,3	51,1	51,1	51,4	51,6	-			
NCH ₃	-	35,8	35,2	35,6	35,4	36.0			
<u>CH</u> 2OH	-	-	- 1	-	-	66,2			
a et b : une attribution inverse est également possible. c : affectation incertaine en raison de la haute dilution.									

série est en cours. En l'attente d'autres arguments chimiques, le bon accord observé entre les interprétations des spectres de R.M.N. du ¹H et ceux du ¹³C, établit sens ambiguité les structures 15 α -OH et 14 β -OH proposées respectivement pour les deux alcools <u>4</u> et <u>6</u>.

Ce travail est présenté en hommage au Professeur Maurice-Marie JANOT à l'occasion de son jubilé.

REFERENCES ET NOTES

1. Numérotation préconisée par J. LE MEN et W.I. TAYLOR, Experientia, 1965, <u>21</u>, 508.

- 2. Les spectres de R.M.N. du ¹³C sont enregistrés à 22,63 MHz en solution dans le CDC1₃ sur un spectromètre de type BRUKER HX-90 E muni d'une transformée de FOURIER : les déplacements chimiques sont donnés par rapport au TMS=0, utilisé comme indicateur interne.
- 3. a) G.C. LEVY et G.L. NELSON, Carbon-13 Nuclear Magnetic Resonance for Organic Chemists, Wiley-Interscience, New-York (1972);
 - b) J.B. STOTHERS, Carbon-13 Nuclear Magnetic Resonance Spectroscopy, Academic Press, New-York (1972).
- 4. E. WENKERT, D.W. COCHRAN, E.W. HAGAMAN, F.M. SCHELL, N. NEUSS, A.S. KATNER, P. POTIER,
- C. KAN, M. PLAT, M. KOCH, H. MEHRI, J. POISSON, N. KUNESCH et Y. ROLLAND, J. Amer. Chem. Soc., 1973, 95, 4990.
- 5. J.D. ROBERTS, F.J. WEIGERT, J.I. KROSCHWITZ et H.J. REICH, J. Amer. Chem. Soc., 1970, <u>92</u>, 1338.